201601

Abstracts and References


Published

Geochemical characteristics of the lava domes in Yatagan village and Sağlik town, from Erenlerdagi (Konya, Central Turkey) volcanites
Kerim Kocak, Veysel Zedef

Abstract

Extensive Late Miocene to Pliocene Erenlerdagi volcanism produced lava domes, nue´e ardentes and ignimbrite deposits in west and southwest of the Konya. The domes may contain various enclaves, which range in size from a few cm to a few meters, and in shape cornered to spherical. 

The volcanic rocks are made up of plagioclase (15-45%), brown amphibole (3-15%), brown biotite (5-10 %), quartz (0-5%), sanidine (0-5%), clinopyroxene (0-5 %), epidote (0-8%), opaque iron ore (3-20%), and accessory acicular apatite and zircon in a holocrystalline porphyric texture. 

Geochemical data shows that all samples are high-K calc-alkaline, mostly metaluminous, and rhyodacite to andesite in composition. They are characterized by an enrichment in Large Ion lithophile Elements (e.g. Cs, K), and a depletion in High Field Strength Elements (e.g. Ti, Y).  In Harker variation diagrams, SiO2 increases with increasing K2O, Na2O, Rb, Th, U, Nb, Zr  contents; and decreasing TiO2, FeOt, MgO, CaO contents, suggesting fractional crystallisation of hornblende (± pyroxene, olivine) and titanite.  The REE pattern of the samples shows an enrichment in Light Rare Earth Elements, and a depletion in Heavy Rare Earth Elements, resultant  with high [(La/Lu)N= 8.2-18.0] ratios.  Existence of slight Eu anomaly (Eu/Eu*: 0.66-0.80 ) may suggest plagioclase fractionation in the samples. 

Based on field, mineralogical and geochemical data, it has been suggested that the Erenlerdagı volcanics could have formed by chemical mixing of felsic and mafic magmas possibly coupled with fractional crystallisation of hornblende (± pyroxene, olivine), plagioclase and titanite, in relation with the subduction of the African plate underneath the Anatolian plate during Miocene. 

Keywords: Geology, Erenlerdağı, geochemistry, enclave, Konya;

Acta Geobalcanica | Volume 2 | Issues 1 | Pp: 7-19; 

DOI: https://doi.org/10.18509/AGB.2016.01


  Available Online First: 21 January 2016

References

[1] Ketin, O. Türkiye jeolojisine genel bir bakis¸. İTÜ Matbaasi, 596 pp, 1983.

[2] Keller, J., Jung, D., Burgath, K., Wolf, F. Geologie und petrologie des Neogenen kalkalkali-vulkanismus von Konya _Erenler Dag˘-Alaca Dag˘-Massiv Zentral-Anatolian.. Geo. Jb. B 25, pp 37–117, 1977.

[3] Ota, R. and Dincel, A. Volcanic rocks of Turkey, Bulletin of the Geological Survey of Japan 26, pp 393-419, 1975.

[4] Ulu , Ü., Bulduk , A.K., Ekmekçi, E., Karakaş , M., Öcal ,H., Arbas , A., Saçlı , L., Taşkıran , M.A., Adır , M., Sözeri , Ş. & Karabıyıkoğlu , M. İİlice - Akkise ve Cihanbeyli-Karapinar Alanının Jeolojisi . Mineral Research Exploration Institute of Turkey Report No: 9720, 1994 [in Turkish, unpublished]

[5] Temel, A., Gündoğdu, M.N., Gourgaud, A. Petrological and geochemical characteristics of Cenozoic high-K calc-alkaline volcanism in Konya, Central Anatolia, Turkey. J. Volcanol. Geotherm. Res. 85, 327–354, 1998.

[6] Tatar, O. Gürsoy, H. & Pıper, J. D. A. Differential neotectonic rotations in Anatolia and the Tauride Arc: palaeomagnetic investigation of the Erenlerdagi Volcanic Complex and Isparta volcanic district, south–central Turkey, Journal of the Geological Society, London, Vol. 159, pp. 281– 294, 2002.

[7] Karakaş, Z. and Kadir, S. Devitrification of volcanic glasses in Konya volcanic units. Turkish Journal of Earth Sciences. V.9, N.1, 39-46. Istanbul, 595 s, 2000.

[8] Kurt, H., Özkan, A.M. and Koçak, K. Geology, Petrography And Geochemistry

Of The Subduction Related Volcanic Rocks, West Of Konya, Central Anatolia, Türkiye Jeoloji Bült, 46/2, 39 – 51, 2003.

[9] Kurt. A, Akgül, B., Kurt, H. Sağlık - Erenkaya (Konya Batısı) Yöresi volkanik Kayaçlarının Petrografik ve Jeokimyasal Özellikleri, F. Ü. Fen ve Mühendislik Bilimleri Dergisi, 17 (1), 190-204, 2005 [in Turkish, with English abstract].

[10] Bering, D. Lithostratigraphie, tektonische Entwicklung und Seengeschichte der Neogenen und Quartaren intramontanen Becken und der Pisidischen Seenregion (Sud-anatolien) - Geomogische Jahrbuch 101, p 150, Hannover, 1971.

[11] Irvine, T. N. and Baragar, W. R. A. Guide to the chemical classification of the common igne-ous rocks. Canadian Journal of Earth Sciences 8, pp 523–548, 1971.

[12] Peccerillo, A and Taylor, S.R. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58, pp 63–81, 1976.

[13] Kerim KOÇAK, Geochemical characteristics of the Late Miocene to Pliocene Ulumuhsine sill of the Erenlerdagi volcanics, Konya, Central Turkey, Ore potential of alkaline, kimberlite and carbonatite magmatism, 2012, 14-18 September, Sudak, Ukraine.

[14] Shand, S. J. The Eruptive Rocks, 2nd edn. New York: John Wiley, pp 444 , 1943.

[15] Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 27, 745–750, 1986.

[16] Hastie, A.R., Kerr, A.C., Pearce, J.A., Mitchell, S.F. Classification of Altered Volcanic Island Arc Rocks using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, v. 48, p. 2341-2357, 2007.

[17] Sun, S.S McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in Saunders AD and Norry MJ (eds) Magmatism in the Ocean Basins, Geological Society Special Publication, 42: pp 313-345, 1989.

[18] Boynton, W.V. Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth elements. Elsevier, pp 63–114, 1984.

[19] Sun, S.S. Lead isotope study of young volcanic rocks from mid- ocean ridges, ocean islands and island arcs, Phil. Trans. R. Soc. London., A297, pp 409- 455, 1980.

[20] Gill, J. B. Orogenic andesites and Plate tectonics. Springer-Verlag, New York, pp 370, 1981.

[21] Schand, E. S. & Gorton, M. P. Application of high field strength elements to discriminate tectonic settings in VMS environments. Economic Geology 97, 629 – 642, 2002.

[22] Pearce, J. A., Harris, N. W. & Tindle, A. G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, pp 956–983, 1984.

[23] Pearce, J. A. A user's guide to basalt discrimination diagrams. In: Wyman, D. A. (ed.) Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. Geological Association of Canada, Short Course Notes 12, 79–113, 1996.

[24] Harris, N.B.W., Pearce, J.A., and Tindle, A.G. Geochemical characteristics of collision zone magmatism: Geological Society, London, Special Publications, v. 19, pp. 67–81, 1986.

[25] Parada, M.A., Nystrom J.O. Levi B. Multiple sources for the Coastal Batholith of central Chile (31–34 S): geochemical and Sr– Nd isotopic evidence and tectonic implications. Lithos , 46: 505–521, 1999.

[26] Shaw A, Downes H, Thirwall MF. The quartz-diorites of Limousin: elemental and isotopic evidence for Devono- Carboniferous subduction in the Hercynian belt of the French Massif Central. Chem Geol 107:1–18, 1993.